
HTTP/2 Prioritization
and its Impact on Web Performance

dr. Maarten Wijnants, Robin Marx

Prof. dr. Peter Quax, Prof. dr. Wim Lamotte

https://speeder.edm.uhasselt.be 



HTTP/1.1 : 6 – 17 Parallel TCP connections

http://www.splicemarketing.co.uk/_blog/Splice_Blog/post/the-arrival-of-http2/



HTTP/2 : Single TCP connection + multiplexing

http://www.splicemarketing.co.uk/_blog/Splice_Blog/post/the-arrival-of-http2/



HTTP/2 : Single TCP connection + multiplexing

https://blog.sessionstack.com/how-javascript-works-deep-dive-into-websockets-and-http-2-with-sse-how-to-pick-the-right-path-584e6b8e3bf7

Prioritization is needed to 
orchestrate the 

multiplexing of the 
streams



HTTP/2 Prioritization
Dependency Tree Mechanism



Dependency tree
TCP connection

index.html

main.css



Parent / Child dependencies

Parent first, then children

Siblings share bandwidth



Resource weights

Parent first, then children

Siblings share bandwidth

https://cloudpack.media/37251

100 50

B gets 66%



Two naïve approaches : FCFS vs RR

16 16 16



Real-world Browser Behavior



Real Browser Results Visualization with H2Vis

https://github.com/rmarx/h2vis

time



Real Browser Results Visualization with H2Vis

https://github.com/rmarx/h2vis

16 16 16

Round

Robin



Real Browser Results

Priority approach Browsers

Round Robin Internet Explorer, Edge, Opera Mini

Weighted Round Robin Safari, UC Browser

Dynamic First-Come First-Served Chrome, Opera, Brave, Dolphin

Complex Tree Firefox



Weighted RR 



Real Browser heuristics



Dynamic/intra-bucket FCFS



Complex Tree



Experimental Evaluation
Which algorithm leads to the fastest page load times?



8 Prioritization Algorithms

 Default browser behaviour

 HTTPS/1.1

 RR

 FCFS

 Serial / Serial+

 Parallel / Parallel+

16 16 16



Algorithms : Serial / Serial+



Algorithms : Parallel / Parallel+



Algorithms : Parallel / Parallel+



Speeder Framework

 Full factorial evaluation

 Modified H2O webserver overrides browser priorities

 40 websites

 2 different performance metrics (loadEventEnd and SpeedIndex)

 Chrome and Firefox (driven by WebpageTest)

 5 advanced network emulations
 Traces from actual cellular networks

 20 runs of each permutation

 Mann-Whitney U test

 p < 0.005

 Measure median deviation from “Default” browser behaviour

https://speeder.edm.uhasselt.be

https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY



Processing + Visualization

Chrome

SpeedIndex

Poor Cellular Network

https://speeder.edm.uhasselt.be



Tabular Visualization



Fast network



Slow network



Slow networks



Slow networks : RR is slowest



Slow networks : HTTP/1.1 is fastest



Slow networks : Parallel helps, but barely



Slow networks : FCFS performs surprisingly well



Experimental Evaluation
Individual Case Studies (i.e., webpage-specific)



RR can yield extreme visual speedup

https://www.pinterest.com/

Round Robin Browser Default



FCFS success story



Discussion and Outlook



Discussion

 Are priority setups tied to browser internals?

 Still unclear, but tends towards NO



Discussion

https://bugs.chromium.org/p/chromium/issues/detail?id=651538



Discussion

 Are priority setups tied to browser internals?

 Unclear, but tends towards NO

 Current heuristics barely outperform naive setups

 And it’s also difficult to improve with generic logic (serial+/parallel+)

 Shows the need for flexible per-resource prioritization options

 See also related work (Wprof, Polaris, Vroom, …)

 Priority-hints have been proposed, but only Google so far

https://groups.google.com/a/chromium.org/forum/m/#!topic/blink-dev/65lfM2f0eeM



Outlook

 QUIC protocol

 Prioritization at the transport layer

 Server can impact priorities more in conjunction with congestion control

 Let’s change default from RR to FCFS in spec?

 And should someone tell Microsoft?

 Up-front dependency graph calculation (for custom priorities!)

 Already happening for JavaScript/CSS modules/web components + 
related academic work



Questions and Extra slides
- Usefulness of bandwidth sharing

- Updates to browser behavior since June 2017

- Dependency buildup mechanism in detail 

- Faster round robin pinterest waterfalls

- Nuances for algorithm behavior in Firefox

- Prioritization bugs in Service Workers, H2 push, async/defer, Resource Hints 

- HTTP/1.1 speed differences explained



Parent / Child dependencies

Parent first, then children

Siblings share bandwidth

https://cloudpack.media/37251

100 50



Evolution of Real Browser Prioritization Strategies



Exclusive vs Non-Exclusive adding of nodes



Weights on siblings

50100

B gets 66%



Weights on siblings

50

50
50

100
100

B gets 66% B gets 66%,

D gets 100%



Weights on siblings

100 5050

50

50
50

100
100

B gets 66% B gets 66%,

D gets 100%

B gets 50%,

D gets 25%



RR is faster on pinterest

https://www.pinterest.com/

Round Robin

Browser Default

background image



On Firefox, FCFS isn’t that great, heuristics best, RR still the worst



Real Browser Implementation issues

 Service Workers lose all priority info

 Weird positioning of PUSH resources in FF and Safari

 Chrome promotes them to correct position

 Firefox adds them directly to root node 

 Safari keeps weight of 16

 Weird behaviour for preload/prefetch and async/defer

 Chrome: async/defer are Low priority always

 Firefox: no special treatment, similar to sync versions



HTTP/1.1 : Head-of-Line Blocking

http://deliveryimages.acm.org/10.1145/2390000/2380673/figs/f5.jpg


