
HTTP/2 Prioritization
and its Impact on Web Performance

dr. Maarten Wijnants, Robin Marx

Prof. dr. Peter Quax, Prof. dr. Wim Lamotte

https://speeder.edm.uhasselt.be 



HTTP/1.1 : 6 – 17 Parallel TCP connections

http://www.splicemarketing.co.uk/_blog/Splice_Blog/post/the-arrival-of-http2/



HTTP/2 : Single TCP connection + multiplexing

http://www.splicemarketing.co.uk/_blog/Splice_Blog/post/the-arrival-of-http2/



HTTP/2 : Single TCP connection + multiplexing

https://blog.sessionstack.com/how-javascript-works-deep-dive-into-websockets-and-http-2-with-sse-how-to-pick-the-right-path-584e6b8e3bf7

Prioritization is needed to 
orchestrate the 

multiplexing of the 
streams



HTTP/2 Prioritization
Dependency Tree Mechanism



Dependency tree
TCP connection

index.html

main.css



Parent / Child dependencies

Parent first, then children

Siblings share bandwidth



Resource weights

Parent first, then children

Siblings share bandwidth

https://cloudpack.media/37251

100 50

B gets 66%



Two naïve approaches : FCFS vs RR

16 16 16



Real-world Browser Behavior



Real Browser Results Visualization with H2Vis

https://github.com/rmarx/h2vis

time



Real Browser Results Visualization with H2Vis

https://github.com/rmarx/h2vis

16 16 16

Round

Robin



Real Browser Results

Priority approach Browsers

Round Robin Internet Explorer, Edge, Opera Mini

Weighted Round Robin Safari, UC Browser

Dynamic First-Come First-Served Chrome, Opera, Brave, Dolphin

Complex Tree Firefox



Weighted RR 



Real Browser heuristics



Dynamic/intra-bucket FCFS



Complex Tree



Experimental Evaluation
Which algorithm leads to the fastest page load times?



8 Prioritization Algorithms

 Default browser behaviour

 HTTPS/1.1

 RR

 FCFS

 Serial / Serial+

 Parallel / Parallel+

16 16 16



Algorithms : Serial / Serial+



Algorithms : Parallel / Parallel+



Algorithms : Parallel / Parallel+



Speeder Framework

 Full factorial evaluation

 Modified H2O webserver overrides browser priorities

 40 websites

 2 different performance metrics (loadEventEnd and SpeedIndex)

 Chrome and Firefox (driven by WebpageTest)

 5 advanced network emulations
 Traces from actual cellular networks

 20 runs of each permutation

 Mann-Whitney U test

 p < 0.005

 Measure median deviation from “Default” browser behaviour

https://speeder.edm.uhasselt.be

https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY



Processing + Visualization

Chrome

SpeedIndex

Poor Cellular Network

https://speeder.edm.uhasselt.be



Tabular Visualization



Fast network



Slow network



Slow networks



Slow networks : RR is slowest



Slow networks : HTTP/1.1 is fastest



Slow networks : Parallel helps, but barely



Slow networks : FCFS performs surprisingly well



Experimental Evaluation
Individual Case Studies (i.e., webpage-specific)



RR can yield extreme visual speedup

https://www.pinterest.com/

Round Robin Browser Default



FCFS success story



Discussion and Outlook



Discussion

 Are priority setups tied to browser internals?

 Still unclear, but tends towards NO



Discussion

https://bugs.chromium.org/p/chromium/issues/detail?id=651538



Discussion

 Are priority setups tied to browser internals?

 Unclear, but tends towards NO

 Current heuristics barely outperform naive setups

 And it’s also difficult to improve with generic logic (serial+/parallel+)

 Shows the need for flexible per-resource prioritization options

 See also related work (Wprof, Polaris, Vroom, …)

 Priority-hints have been proposed, but only Google so far

https://groups.google.com/a/chromium.org/forum/m/#!topic/blink-dev/65lfM2f0eeM



Outlook

 QUIC protocol

 Prioritization at the transport layer

 Server can impact priorities more in conjunction with congestion control

 Let’s change default from RR to FCFS in spec?

 And should someone tell Microsoft?

 Up-front dependency graph calculation (for custom priorities!)

 Already happening for JavaScript/CSS modules/web components + 
related academic work



Questions and Extra slides
- Usefulness of bandwidth sharing

- Updates to browser behavior since June 2017

- Dependency buildup mechanism in detail 

- Faster round robin pinterest waterfalls

- Nuances for algorithm behavior in Firefox

- Prioritization bugs in Service Workers, H2 push, async/defer, Resource Hints 

- HTTP/1.1 speed differences explained



Parent / Child dependencies

Parent first, then children

Siblings share bandwidth

https://cloudpack.media/37251

100 50



Evolution of Real Browser Prioritization Strategies



Exclusive vs Non-Exclusive adding of nodes



Weights on siblings

50100

B gets 66%



Weights on siblings

50

50
50

100
100

B gets 66% B gets 66%,

D gets 100%



Weights on siblings

100 5050

50

50
50

100
100

B gets 66% B gets 66%,

D gets 100%

B gets 50%,

D gets 25%



RR is faster on pinterest

https://www.pinterest.com/

Round Robin

Browser Default

background image



On Firefox, FCFS isn’t that great, heuristics best, RR still the worst



Real Browser Implementation issues

 Service Workers lose all priority info

 Weird positioning of PUSH resources in FF and Safari

 Chrome promotes them to correct position

 Firefox adds them directly to root node 

 Safari keeps weight of 16

 Weird behaviour for preload/prefetch and async/defer

 Chrome: async/defer are Low priority always

 Firefox: no special treatment, similar to sync versions



HTTP/1.1 : Head-of-Line Blocking

http://deliveryimages.acm.org/10.1145/2390000/2380673/figs/f5.jpg


