
Concatenation, Embedding and Sharding:

Do HTTP/1 Performance Best Practices 
Make Sense in HTTP/2?

Robin Marx

PhD Researcher

robin.marx@uhasselt.be



2



3



4

Web Performance 

 HTTP/2 is the new kid in town!

 Replaces good old trusted HTTP/1.1

 Currently 13.3% of sites is on H2*

 How is HTTP/2 different from HTTP/1.1?

 Is h2 always faster than h1? And why?

 Do we need to change our sites to get the 
most out of h2?

*https://w3techs.com/technologies/details/ce-http2/all/all



5

HTTP/1.1 : the bad and the ugly 1

 Single resource at a time per TCP connection

 “Head of Line” (HOL) blocking

http://deliveryimages.acm.org/10.1145/2390000/2380673/figs/f5.jpg



6

HTTP/1.1 : The solution!

 6 parallel TCP/HTTP connections per domain 

http://www.splicemarketing.co.uk/_blog/Splice_Blog/post/the-arrival-of-http2/



7

HTTP/1.1 : 6 is not enough!

 Best Practice 1 : Concatenation

 = merge files together to reduce # resources

 1.js + 2.js + 3.js = scripts.js

 Downside: reduced cacheability

https://www.phase2technology.com/blog/bundle-your-front-end-with-webpack/



8

HTTP/1.1 : 6 is not enough!

 Best Practice 2 : Domain Sharding

 Content Delivery Networks (CDNs)

 img1.site.com, img2.site.com, static.site.com

 Downside: serverside overhead

https://blog.cloudflare.com/content/images/2015/12/domain-sharding-1.png



9

HTTP/2 : The Challenger

 Started as SPDY, standardized in 2016

 Back to 1 TCP connection

 Priority-based multiplexing of resource streams

http://www.splicemarketing.co.uk/_blog/Splice_Blog/post/the-arrival-of-http2/



10

HTTP/2 : Solves HOL blocking!



11

HTTP/1.1 : the bad and the ugly 2

 Round trip times cause most of the delay

 “dependency graph” / resource discovery

Index.html
references

Style.css
references

Font.woff2

-> min. 3 round-trips needed 

before rendering can start!

https://calendar.perfplanet.com/2016/http2-push-the-details/



12

HTTP/1.1 : Round trip times

 Best Practice 3 : Resource embedding

 = Inline resource inside HTML file

 <link rel=“stylesheet” href=“style.css” />

VS

 <style> #myDiv{ color: #FFBEEF; } </style>

 Downside: reduced cacheability



13

HTTP/2 : The Challenger

 Ability to Push resources along

No Push With Push
https://calendar.perfplanet.com/2016/http2-push-the-details/



14

HTTP/2 : The bad and the ugly

 In theory, H1 best practices are now obsolete
 High-performance browser networking (Grigorik, 2013)

 But: Single TCP connection

 More sensitive to loss than # parallel connections

 But: TCP in-order guarantee (kernel-level)

 ~Head-of-line blocking when retransmit

 Problems expected on bad connections

 Difficult to estimate actual impact…



15

Epic battles in contradictory previous work

HTTP/1.1 HTTP/2

TODO



16

1. Implementations change

 SPDY vs H2

 Server and Browser support

2. Test setups are limited

 Single browser, server, metric, network, tool, 
platform, …

? Protocol-inherent or implementation-based ?

Epic battles in contradictory previous work



17

TEST ALL THE THINGS!

The Speeder Framework



18

TEST MOST OF THE THINGS!

The Speeder Framework



19

loadEventEnd vs SpeedIndex

 loadEventEnd

 document.onload

 = Everything is downloaded and rendered

A

B

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index



20

loadEventEnd vs SpeedIndex

 SpeedIndex

 % of visual complete over time (video frames!)

 Quick to render = better for user experience

 Measured in milliseconds = LOWER IS BETTER

95% 95% 100%

20% 20% 100%

A = 1219

B = 9022

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index



21

TEST MOST OF THE THINGS!

The Speeder Framework



22

 Automate this setup using Docker

 Light-weight stateless VMs based on install 
scripts

 Easy to Update!

 Easy to Share!

 Available on speeder.edm.uhasselt.be

 Go forth and reproduce!

The Speeder Framework



23

Recap

1. 3 Best Practices to combat H1 downsides

2. HTTP/2 performance is unclear

3. Test many permutations with Speeder

? Impact on developer workflow ?
- Synthetic test cases for best practices

- Realistic test cases 



24

1. Concatenation

 CSS/JavaScript : 1 – 500 files, 
simple and complex

1 line per <div>

multiple lines 

per <div>



25

1. Concatenation : 500 CSS/JS

CSS Simple JS Complex



26

1. Concatenation : 500 CSS/JS

CSS Simple JS Complex



27

1. Concatenation : 30 CSS/JS

CSS Simple JS Complex



28

1. Concatenation : 30 CSS/JS

CSS Simple JS Complex



29

1. Concatenation : JS SpeedIndex

loadEventEnd SpeedIndex

?



30

1. Concatenation : JS SpeedIndex

?

H1 is much lower = rendering starts ASAP

H2 is ~ the same = rendering is delayed



31

1. Concatenation : JS SpeedIndex

H1

H2

SpeedIndex H1 = 2729

SpeedIndex H2 = 3217

 500 individual files



32

2. Sharding

 Images : 380 small, 42 medium, 30 large

 Sharded over 4 hosts (24 H1 conns, 4 H2)



33

2. Sharding : 380 small images

NOT OPTIMIZED



34

2. Sharding : 380 small images

NOT OPTIMIZED



35

2. Sharding : 380 small images

NOT OPTIMIZED



36

2. Sharding : 380 small images

OPTIMIZED NOT OPTIMIZED



37

2. Sharding : 42 medium images

OPTIMIZED NOT OPTIMIZED



38

2. Sharding : 30 large images

OPTIMIZED NOT OPTIMIZED



39

2. Sharding : 30 large images

OPTIMIZED NOT OPTIMIZED



40

3. Embedding and Push

 Embedding : critical CSS 

 Push : various test cases

FULL SITE CRITICAL CSS

https://github.com/bradleyfalzon/h2push-demo



41

3. Embedding

OPTIMIZED NOT OPTIMIZED



42

3. Push



43

3. Push



44

3. Push



45

4. Realistic websites

 How would a developer test H2 on his site?

 No sharding for main assets (~H2 should win)



46

4.

GOOD POOR



47

4.

GOOD POOR



48

4.

GOOD POOR



49

4.

GOOD POOR



50

4.

GOOD POOR



51

Conclusions : HTTP/2

 Better for large amounts of small files

 Worse for larger files

 Suffers from bad networks but so does 
HTTP/1

 For most “average” testcases, performance 
is similar between H1 and H2, with (much) 
less overhead (# connections) from H2



52

Conclusions : HTTP/1 Best Practices

 Concatenation: implementation-limited

 Sharding: protocol-inherent

 Embedding: can be replaced by Push

 Most “average” H1 websites can be 
transferred to H2 without much work 



53

Conclusions : Outlook

 More fine-grained caching (web components, 
Single Page Apps, …)

 Bigger websites remain difficult (4k images, 
VR/gaming, …)

 QUIC is already being standardized!



54

Ask me about:

 Cellular network emulation

 QUIC protocol

 TCP slow start and embedding/push

 HPACK header compression

 Browser rendering behavior

 Website optimization anecdotes

 Docker / The Speeder Framework

 HTTPS vs HTTP cleartext

 Other uses of HTTP/2 Push



55

Cellular network emulation

 “Http/2 performance in cellular networks” 
(Goel et al., 2016) – MobiCOM

 Traces of real networks @ CDN edge

 Modulate TC NETEM parameters every 70 ms

 https://github.com/akamai/cell-emulation-util

 Fixed model based on Chrome Devtools

 Add loss

 Typically clearer 
but similar trends 

https://github.com/akamai/cell-emulation-util


56

QUIC protocol

 QUIC = Quick UDP Internet Connections

 “Re-implement TCP in application layer” ~TCP 2.0

 Removes TCP HOL-blocking and adds smarter 
flow-control / less sensitive to loss

 FEC, Connection UUID/handoffs, multipath, …

 https://ma.ttias.be/googles-quic-protocol-moving-web-tcp-udp/



57

TCP slow start and embedding/push

 TCP slow start uses congestion window

 Initial value is ~14KB in modern linux

 Grows when data is ACK’ed (takes roundtrip)

 If data > 14KB limit, additional RTTs needed!



58

HPACK header compression

 HTTP headers are often the same

 Especially important for large cookies

 HPACK uses dynamic dictionary encoding
 Learns during connection, builds dict at both sides



59

Browser rendering behavior

 “Render blocking”

 CSS and sync JS : could change DOM/CSSOM! 

 Mitigation: Place on bottom of <body>



60

Website Optimization anecdotes

 Hero image halfway on the page

 6 HTTP/1 connections had been taken up, HTTP/2 
gives all images same priority

 Concatenation : only benefits HTTP/1

 Moving image up in HTML : benefits both



61

Website Optimization anecdotes

 Embedding is Best Practice!

 Let’s embed our fonts as well! Base64-style!

 Embeds > 100KB in fonts that are not cached…

 Every new page load, flash-of-unstyled-content 
despite embedding



62

Docker / The Speeder Framework

 3 Docker containers

 Base (C&C), Backend and Agents

 Dockerfile is easy to update, rebuild, deploy

 5 private WebPageTest instances

 C&C starts instances and restarts all running 
software before each test

 Spread over 16 Linux VMs and 5 Windows VMs



63

Docker / The Speeder Framework

 Simple GUI for starting tests



64

Docker / The Speeder Framework

 Quick graphing of results



65

HTTPS vs HTTP cleartext

 Push towards a safer web

 H2 cleartext isn’t supported by any browser

 Many of the newer (performance) features 
only work over HTTPS 

httparchive.org



66

Other uses of HTTP/2 Push

 Warm vs cold connections

 Single Page Apps / REST APIs

 Service Workers

 Video streaming

 CDN-side

 But: Caching problems!

 But: Server support!

 But: Re-prioritization! 



67

loadEventEnd vs SpeedIndex

 SpeedIndex

 % of visual complete over time (video frames!)

 Quick to render = better for user experience

 Measured in milliseconds = LOWER IS BETTER

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index 



68

1. Concatenation

 Images : 380 small, 42 medium, 30 large

 CSS/JavaScript : 1 – 500 files, simple and 
complex

http://www.netflix.com



69

1. Concatenation : 380 small images

OPTIMIZED NOT OPTIMIZED



70

1. Concatenation : 42 medium images

OPTIMIZED NOT OPTIMIZED



71

1. Concatenation : 30 large images

OPTIMIZED NOT OPTIMIZED



72

1. Concatenation : CSS SpeedIndex

loadEventEnd SpeedIndex



73

1. Concatenation : CSS SpeedIndex

Both are the same = rendering started at onLoad

=> Page was white until all CSS was loaded



74

4. Realistic websites

 Many factors contribute to load times

 Polaris (Netravali et al.), Shandian (Wang et al.)

 Other related work exists

 http://isthewebhttp2yet.com (Varvello et al.)

Can we simply transfer HTTP/1 

sites to HTTP/2 ?

http://isthewebhttp2yet.com/


75

Image Sources
 http://deliveryimages.acm.org/10.1145/2390000/2380673/figs/f5.jpg

 https://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2017/01/1484692838webpack-dependency-
tree.png

 https://blog.cloudflare.com/content/images/2015/12/domain-sharding-1.png

 https://calendar.perfplanet.com/2016/http2-push-the-details/

 http://www.splicemarketing.co.uk/_blog/Splice_Blog/post/the-arrival-of-http2/

 http://s1377.photobucket.com/user/barteks11/media/Marvel%20gifs/h20wkj2-iron-man-vs-captain-
america-who-sides-with-who-in-marvel-s-civil-war-jpeg-151871_zpsarkko07f.jpg.html

 https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

 https://twitter.com/officialrtsf

 https://twitter.com/ThePracticalDev

 http://www.netflix.com

http://deliveryimages.acm.org/10.1145/2390000/2380673/figs/f5.jpg
https://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2017/01/1484692838webpack-dependency-tree.png
https://blog.cloudflare.com/content/images/2015/12/domain-sharding-1.png
https://calendar.perfplanet.com/2016/http2-push-the-details/
http://www.splicemarketing.co.uk/_blog/Splice_Blog/post/the-arrival-of-http2/
http://s1377.photobucket.com/user/barteks11/media/Marvel gifs/h20wkj2-iron-man-vs-captain-america-who-sides-with-who-in-marvel-s-civil-war-jpeg-151871_zpsarkko07f.jpg.html
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://twitter.com/officialrtsf
https://twitter.com/ThePracticalDev
http://www.netflix.com/

